本文最后更新于:2020年10月12日 下午
近期学长在研究方向上给了我一些指导,在此总结整理一下。
- 学长整理的视频目标检测综述:https://blog.csdn.net/breeze_blows/article/details/105323491
- 学姐整理的视频目标检测综述:https://blog.csdn.net/sinat_31184961/article/details/103128931
- 学长的github:https://github.com/breezelj
- 学长整理的视频目标检测的文章:https://github.com/breezelj/video_object_detection_paper
视频目标检测论文
- RDN: Jiajun Deng, Yingwei Pan, Ting Yao, Wengang Zhou, Houqiang Li, and Tao Mei. “Relation Distillation Networks for Video Object Detection”. ICCV(2019).
- SELSA: Haiping Wu, Yuntao Chen, Naiyan Wang, Zhaoxiang Zhang. “Sequence Level Semantics Aggregation for Video Object Detection”. ICCV(2019).
- LLTR: Mykhailo Shvets, Wei Liu, Alexander C. Berg. “Leveraging Long-Range Temporal Relationships Between Proposals for Video Object Detection”. ICCV(2019).
- MEGA: Yihong Chen, Yue Cao, Han Hu, Liwei Wang. “Memory Enhanced Global-Local Aggregation for Video Object Detection”. CVPR(2020).
- HVRNet: Mingfei Han, Yali Wang, Xiaojun Chang, and Yu Qiao Mining. “Mining Inter-Video Proposal Relations for Video Object Detection”. ECCV(2020).
- FGFA: Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, Yichen Wei. “Flow-Guided Feature Aggregation for Video Object Detection”. ICCV(2017).
学长总结的目标检测论文(转)
基于anchor的目标检测主要可以分为two-stage detector;one-stage detector
1.two-stages:
- RCNN: Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR014
- Fast RCNN. ICCV2015
- Faster RCNN: Towards real-time object detection with region proposal networks. NIPS2015
- Mask RCNN. ICCV2017
- Cascade RCNN: Delving into High Quality Object Detection. CVPR2018
2.one-stage:
- YOLOv1: You only look once: Unified, real-time object detection. CVPR2016
- Yolo9000: better, faster, stronger. CVPR2017
- YOLOv3: An Incremental Improvement
- SSD: Single shot multibox detector. ECCV2016
- Retinanet: Focal loss for dense object detection. ICCV2017
近年来兴起的anchor-free的detector
3.anchor-free:
- CornerNet: Detecting Objects as Paired Keypoints. ECCV2018.
- FCOS: Fully Convolutional One-Stage Object Detection. ICCV2019
- Centernet:Objects as Points/ Keypoint triplets for object detection ICCV2019
4.一些通用的目标检测结构
- OHEM: Training Region-based Object Detectors with Online Hard Example Mining. CVPR2016
- FPN: Feature Pyramid Networks for Object Detection. CVPR2017
5.目标检测平台(集成了众多目标检测算法的代码实现)
- mmdetection:https://github.com/open-mmlab/mmdetection
- detectron2:https://github.com/facebookresearch/detectron2
6.目标检测综述文章
Object Detection in 20 Years: A Survey
A Survey of Deep Learning-based Object Detection
Recent Advances in Deep Learning for Object Detection
- https://github.com/hoya012/deep_learning_object_detection#2014